If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-1015=0
a = 1; b = -6; c = -1015;
Δ = b2-4ac
Δ = -62-4·1·(-1015)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-64}{2*1}=\frac{-58}{2} =-29 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+64}{2*1}=\frac{70}{2} =35 $
| .6m+15=10+.4m | | 6^2+19x=15 | | 9x=360-234 | | 3/5m+15=10=2/5m | | n×6=54 | | 174x=180(x-2) | | Y+(x+8)=180 | | 5×0.75+3j=10.35 | | 1x+3x=2400 | | 6+2x=6+2x+2 | | -4x-6=2x+12 | | 29=2-9y | | 3x=715-448 | | 88=2x+(4x+8)+2x+(4x+8) | | 63,55=(63x+6500-65x)/100 | | g/5+4=14 | | (X-3)(x-3)+(x+5)(x+5)=81 | | 10+.15x=40+0.05 | | 2(x-4)x=10 | | 2k÷8=-14 | | 10+3x=4+4x | | 4p+7=27 | | X+(x+460)=740 | | 4y+1=2y+8y= | | 120+.5x=100+.10x | | 3(5x+3)/6=8 | | 3x(5x+3)/6=8 | | 3x(3x+16)=0 | | 186+8x=9.50x | | 5/6x-3=5-7/6x | | 5(8x-1)-3x=8x+24 | | 5(3x+12)=18 |